Approximating matrix-exponential distributions by global randomization
نویسندگان
چکیده
Based on the general concept of randomization, we develop linear-algebraic approximations for continuous probability distributions that involve the exponential of a matrix in their definitions, such as phase types and matrixexponential distributions. The approximations themselves result in proper probability distributions. For such a global randomization with the Erlangdistribution, we show that the sequences of true and consistent distribution and density functions converge uniformly on . Furthermore, we study the approximation errors in terms of the power moments and the coefficients of the Taylor series, from which the accuracy of the approximations can be determined apriori. Numerical experiments demonstrate the feasibility of the presented randomization technique – also in comparison with uniformization.
منابع مشابه
Approximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملThe Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics
In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...
متن کاملApproximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study
Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...
متن کاملApproximating distributions and transient probabilities of Markov chains by Bernstein expolynomial functions
In this extended abstract we consider the use of Bernstein polynomials (BPs) for the approximation of distributions and transient probabilities of continuous time Markov chains (CTMCs). We show that while standard BPs are not appropriate to this purpose it is possible to derive from them a family of functions, called in the sequel Bernstein expolynomials (BEs), which enjoys those properties tha...
متن کاملOn Bivariate Generalized Exponential-Power Series Class of Distributions
In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...
متن کامل